

THE QUANTUM SPACETIME SEMINAR SERIES

Constraints on parity violating conformal field theories in *d*=3

Justin David (IISc-CHEP, Bengaluru)

Date: Sep 25, 2017

Time: 11:30

Venue: A-304, TIFR

We derive constraints on three-point functions involving the stress tensor, T, and a conserved U(1) current, j, in 2+1 dimensional conformal field theories that violate parity, using conformal collider bounds introduced by Hofman and Maldacena. Conformal invariance allows parity-odd tensor-structures for the < TTT> and < jjT> correlation functions which are unique to three space-time dimensions. Let the parameters which determine the < TTT> correlation function be t_4 and t_7 , where t_7 is the parity-violating contribution. Similarly let the parameters which determine < jjT> correlation function be t_8 , and t_8 , where t_8 is the parity-violating contribution. We show that the parameters t_8 and t_8 and t_8 and t_8 are bounded to lie inside a disc at the origin of the t_8 and t_8 plane respectively. We then show that large t_8 Chern-Simons theories coupled to a fundamental fermion/boson lie on the circle which bounds these discs. The `t Hooft coupling determines the location of these theories on the boundary circles.