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In the first half of this talk, I will explain some key points of black
hole thermodynamics as it was developed in the 1970’s.

In the second half, I will explain some more contemporary results,
though I will not be able to bring the story really up to date.

I cannot explain all the high points in either half of the talk,
unfortunately, as time will not allow.



Black hole thermodynamics started with the work of Jacob
Bekenstein (1972) who, inspired by questions from his advisor John
Wheeler, asked what the Second Law of Thermodynamics means
in the presence of a black hole.

The Second Law says that, for an ordinary system, the “entropy”
can only increase. However, if we toss a cup of tea into a black
hole, the entropy seems to disappear. Bekenstein wanted to
“generalize” the concept of entropy so that the Second Law would
hold even in the presence of a black hole. For this, he wanted to
assign an entropy to the black hole.



What property of a black hole can only increase? It is not true
that the black hole mass always increases. A rotating black hole,
for instance, can lose mass as its rotation slows down. But there is
a quantity that always increases: Stephen Hawking had just proved
the “area theorem,” which says that the area of the horizon of a
black hole can only increase. So it was fairly natural for Bekenstein
to propose that the entropy of a black hole should be a multiple of
the horizon area. For example, for a Schwarzschild black hole of
mass M

ds2 = −
(

1− 2GM

r

)
dt2 +

dr2

1− 2GM
r

+ r2dΩ2,

the horizon is at
R = 2GM

and the horizon area is

A = 4πR2 = 16π2G 2M2.



Since entropy is dimensionless, to relate the entropy of a black hole
to its area, one requires a constant of proportionality with
dimensions of area. From fundamental constants ~, c and
G = Newton′s constant, one can make the Planck length
`P = (~G/c3)1/2 ∼= 10−33 cm, and the Planck area `2

P . In units
with ~ = c = 1, Bekenstein’s formula for the entropy was

S =
A

4G
,

where the constant 1/4 was not clear in Bekenstein’s work and was
provided by Stephen Hawking a few years later, in a way that I will
explain. For a Schwarzschild black hole

S = 4π2GM2.



Bekenstein’s idea was that the entropy of a black hole was
supposed to capture the information lost when the black hole was
formed – he interpreted it as the logarithm of the number of
possible ways the black hole might have formed. Bekenstein
proposed a “generalized second law” saying that the “generalized
entropy”

Sgen =
A

4G
+ Sout

always increases. Here Sout is the ordinary entropy of matter and
radiation outside the black hole. The claim is that when something
falls into the black hole, Sout may go down but A/4G increases by
more.



Bekenstein made a few tests of the generalized second law. Here is
one. Shine photons with a wavelength λ and (therefore) energy
E = 1/λ on the black hole. The entropy of a single photon is of
order 1, for example because the photon has two polarization
states. When the black hole absorbs one photon, its mass shifts by

∆M =
1

λ

so its entropy Sbh = 4π2GM2 shifts by

∆Sbh = 4π2G ((M + 1/λ)2 −M2) ∼= 8π2G
M

λ
.

Bekenstein wanted ∆Sbh > ∆Sout ∼= 1. He observed that if the
black hole is capturing a photon of size smaller than the
Schwarzschild diameter 2R = 4GM of the black hole, say

λ << 4GM

then
∆Sbh >> 2π2

which is satisfactory. (He did a more complete calculation for a
rotating black hole and got a smaller but still satisfactory result).



However, Bekenstein did not really get a satisfactory answer if the
black hole is absorbing photons of wavelength larger than the black
hole size – which can happen, though not very efficiently. This
question really does not have a satisfactory answer in the
framework that Bekenstein was assuming, which was that whatever
falls behind the black hole horizon stays there forever. In
thermodynamic terms, since Bekenstein assumed that the black
hole does not radiate, one would have to assign it a temperature of
0. Thermodynamics says that at equilibrium the changes in energy
E and entropy S of a system are governed by

dE = TdS

or dS = dE/T , so a system with T = 0 should have dS =∞ if
dE 6= 0. But Bekenstein wanted to attribute a finite, not infinite,
entropy to the black hole. One cannot analyze the absorption of
very long wavelength photons by the black hole while ignoring the
fact that the black hole is strongly emitting such photons.



Famously, Stephen Hawking discovered in 1974 that at the
quantum level, a black hole is not really black – it has a
temperature proportional to ~. Hawking discovered this by
analyzing the behavior of quantum fields in a black hole geometry:



Measurements that an observer at future null infinity will make can
be traced back to initial conditions of the quantum field on a
Cauchy hypersurface. It is convenient to pick a hypersurface that
crosses the horizon to the future of the collapsing star:



This picture shows signals propagating out at the speed of light
from the initial value surface to the observer at infinity:

What will the observer see? Part of Hawking’s insight was that
although the full details of exactly what the observer will see
depend on the details of the collapsing star, if we ask what the
observer will see in the far future after transients die down, we will
get a universal answer.



The most important point about this picture is that a signal that is
received very late

originated from very close to the horizon. This means that observations
made at late times depend on measurements of the state of the quantum
fields at short distances. But every state is equivalent to the vacuum at
short distances. So the late time observations of the observer probe the
vacuum state near the horizon at short distances. That is why Hawking
got a universal answer for the late time behavior, regardless of exactly
how the black hole formed.



Let u be a coordinate function that vanishes on the horizon on
some particular Cauchy slice - it doesn’t matter precisely how u is
defined.

And let t be the time at which a signal is detected by an observer
at infinity. The relation between u and t is

t = 4GM log
1

u
+ C0 +O(u),

where C0 is an integration constant. One finds this formula by
solving the geodesic equation for an outgoing null geodesic.
Rescaling u will only shift the unimportant constant C ; nonlinear
redefinitions of u will affect the unimportant O(u) terms.



We can solve the equation t = 4GM log 1
u + C0 +O(u) for u:

u = C1 exp(−t/4GM).

At late times, that is if t is large, u is exponentially small.
Moreover, du/dt is also exponentially small, which means that a
mode observed at infinity will have undergone an exponentially
large redshift on its way. A mode of any given energy E that is
observed at a sufficiently late time will have originated from a very
high energy mode near the horizon. That is why there is a simple
answer. A mode of very high energy propagates freely, along the
geodesics that I’ve been drawing.



The observer at infinity probes the radiation by measuring a
quantum field ψ(t). A typical observable is a two-point function

〈ψ(t)ψ(t ′)〉.

Near the horizon, if the field ψ is for simplicity a free fermion with
dimension 1/2 in the 1 + 1-dimensional sense, one would have had

〈ψ(u)ψ(u′)〉 =
(du du′)1/2

(u − u′)
.

Setting u = C1 exp(−t/4GM), we see that for the observer at
infinity, this translates to

〈ψ(t)ψ(t ′)〉 =
(dtdt ′)1/2

exp((t − t ′)/8GM)− exp(−(t − t ′)/8GM)
.

This is antiperiodic in imaginary time, that is it is odd under
t → t + 8πGMi. That antiperiodicity corresponds to a thermal
correlation function at a temperature TH = 1/8πGM, which is the
Hawking temperature.



In other words, a black hole, after transients that depend on how it
was created die down, radiates thermally at a temperature
TH = 1/8πGM. This explains why Bekenstein had had trouble
making sense of the interaction of the black hole with low energy
photons. It also lets us confirm the value of the entropy: using

dE = TdS

where E = M and T = 1/8πGM gives dS = 8πGMdM so
S = 4πGM2. The area of a Schwarzschild black hole is
A = 16πG 2M2 so the entropy is

S =
A

4G
.

This is how Hawking confirmed Bekenstein’s ansatz and
determined the constant that was unclear in Bekenstein’s work.



Many researchers have thought that, somehow, the entropy
S = A/4G means that the black hole can be described by some
sort of degrees of freedom that live at its surface – one bit or qubit
for every 1/4G of area. For example, in a famous article in 1992,
John Wheeler illustrated that idea with this picture:312 JOHN ARCHIBALD WHEELER THE SEARCH FOR LINKS 313

Fig. 19.1. Symbolic representation of the "telephone number" of the particular one of the
2" conceivable, but by now indistinguishable, configurations out of which this particular
blackhole, of Bekenstein number N and horizon area 4NHlogs2, was put together. Symbol,
also, in a broader sense, of the theme that every physical entity, every it, derives from bits.
Reproduced from JGST, p.220.

a magnetic field B that runs perpendicular to it. In consequence the piece of copper
receives in the time t a transfer of momentum p in a direction z perpendicular to
the directions of the wire and of the field,

p - Blit
= (flux per unit z) x (charge, e, of the elementary carrier of current)

x (number, N,of carriers that pass in the time t)
(19.2)

This impulse is the source of the force that displaces the indicator needle of the
magnetometer and gives us an instrument reading. We deal with bits wholesale
rather than bits retail when we run the fiducial current through the magnetometer
coil, but the definition of field founds itself no less decisively on bits.

As third and final example of it from bit we recall the wonderful quantum
finding of Bekenstein [58-60] — totally unexpected denouement of earlier classical
work of Penrose [61] Christodoulou [62] and Ruffini [63] — refined by Hawking [64,
65] that the surface area of the horizon of a blackhole, rotating or not, measures
the entropy of the blackhole. Thus this surface area, partitioned in imagination
(Fig. 19.1) into domains each of size 4fUoge2, that is, 2.77... times the Planck area,

yields the Bekenstein number, N; and the Bekenstein number, so Thorne and Zurek
explain [66] tells us the number of binary digits, the number of bits, that would be
required to specify in all detail the configuration of the constituents out of which
the blackhole was put together. Entropy is a measure of lost information. To no
community of newborn outside observers can the blackhole be made to reveal out
of which particular one of 2N configurations it was put together. Its size, an it, is
fixed by the number, N, of bits of information hidden within it.

The quantum, H, in whatever correct physics formula it appears, thus serves as
lamp. It lets us see horizon area as information lost, understand wave number of
light as photon momentum and think of field flux as bit-registered fringe shift.

Giving us its as bits, the quantum presents us with physics as information.

How come a value for the quantum so small as H = 2.612 x 10~66 cm2? As well
as ask why the speed of light is so great as c = 3 x 1010 cm/s! No such constant
as the speed of light ever makes an appearance in a truly fundamental account
of special relativity or Einstein geometrodynamics, and for a simple reason: Time
and space are both tools to measure interval. We only then properly conceive
them when we measure them in the same units [4, 16]. The numerical value of
the ratio between the second and the centimeter totally lacks teaching power. It
is an historical accident. Its occurrence in equations obscured for decades one of
Nature's great simplicities. Likewise with H\y equation that contains an H
floats a banner, "It from bit". The formula displays a piece of physics that we
have learned to translate into information-theoretic terms. Tomorrow we will have
learned to understand and express all of physics in the language of information. At
that point we will revalue H = 2.612 x 10~66 cm2 — as we downgrade c = 3 x 1010

cm/s today — from constant of Nature to artifact of history, and from foundation
of truth to enemy of understanding.

19.3 Four No's

To the question, "How come the quantum?" we thus answer, "Because what we
call existence is an information-theoretic entity." But how come existence? Its
as bits, yes; and physics as information, yes; but whose information? How does
the vision of one world arise out of the information-gathering activities of many
observer-participants? In the consideration of these issues we adopt for guidelines
four no's.

First no: "No tower of turtles," advised William James. Existence is not a globe
supported by an elephant, supported by a turtle, supported by yet another turtle,
and so on. In other words, no infinite regress. No structure, no plan of organization,
no framework of ideas underlaid by another structure or level of ideas, underlaid
by yet another level, by yet another, ad infinitum, down to a bottomless night. To
endlessness no alternative is evident but loop [47, 67], such a loop as this: Physics



A fundamental point about Hawking radiation is that the radiation
appears to be thermal even though the black hole could have
formed from a pure state. The reason that this happened is that
the observations of the distant observer amount to observing a
quantum field that lives in 1 + 1 dimensions on only half of space:

Think of the ground state of a quantum field as a function
Ψ(φ(x)) where φ(x) is the field on the real line. Further, think of
φ(x) as a pair φ`(x), φr (x), where φ` is defined on the left half of
the line and φr on the right half. So the ground state is a function
Ψ(φ`, φr ). Let us discuss how to make a “density matrix”
appropriate for observations of φr only.



Let us remember the general idea of a density matrix: We start
with a pure state ψAB in a tensor product Hilbert space HA ⊗HB.
We first make the “pure state” density matrix

ρAB = |ψAB〉〈ψAB|

The expectation value of any operator OAB is

〈ψAB|OAB|ψAB〉 = TrABOABρAB.

Note that ρAB is the orthogonal projection operator on the state
ψAB; in particular, it is hermitian, non-negative, satisfies

TrAB ρAB = 1

and has rank 1.



Now suppose we are only going to observe the subsystem A. That
means that we consider only operators of the form
OAB = OA ⊗ 1B. The expectation of this operator in the state
ψAB is

TrAB (OA ⊗ 1B)ρAB = TrAOAρA

where
ρA = TrB ρAB.

In other words, for measurements on system A only, we can use
the density matrix ρA which is obtained from ρAB by taking a
“partial trace” on HB. The definition of ρA ensures that it is
hermitian, non-negative, and has trace 1, just like ρAB, but it does
not necessarily have rank 1. If ψAB is an “entangled” state of the
subsystems A and B, then ρA has rank greater than 1. An
entangled state is just a state that is not a tensor product
ψA ⊗ ψ̃B of separate states of the two subsystems. So almost
every quantum state of the combined system is entangled.



To imitate this in field theory, we first need a convenient
representation of the ground state wavefunction Ψ(φ`, φr ). It is
given by a path integral on the lower half-plane:

with boundary conditions
in which the boundary values φ`, φr on the boundary are specified.
The path integral computes a wavefuncetion Ψ(φ`, φr ).



Similarly, to make the pure state density matrix |Ψ〉〈Ψ| for the
whole line, we multiply a path integral on the lower half-plane by a
similar path integral on the upper half-plane:

Now the “partial trace” that gives a density matrix for the right
half only is accomplished by setting the fields φ` in the left halves
of the picture to be equal and integrating over φ`. This glues
together the left halves of the upper and lower boundaries.



Now the path integral that we are doing looks like this:

It is a path integral on the whole plane with a cut on the positive
real axis. The path integral computes a function ρ(φr , φ

′
r ), where

φ′r are the boundary values above the cut and φr are boundary
values below the cut. This is our density matrix.



However, this path integral can be understood in another way:

I’ve drawn the same thing, but in a way that emphasizes the
rotational symmetry. One can generate the cut plane by starting
with a half-line and rotating it by a 2π angle around its endpoint.
This gives us a formula for the density matrix. If R is the operator
that generates the rotation, the density matrix is

ρ = exp(−2πR).



It is useful to write this formula in Lorentz signature. In Lorentz
signature, R becomes the Lorentz boost operator K so

ρ = exp(−2πK ).

However, since ρ is a density matrix acting on a state defined only
on the positive half-space, say x > 0, likewise here K is a Lorentz
boost generator defined in the region x > 0:

K =

∫ ∞
0

dx xT00(x).

As usual for a charge generator, the integral is over space (here a
half-space) at a fixed time, say t = 0.



Let us go back to our formula

u = C1 exp(−t/4GM). (∗)

We can now give a new explanation of why this formula led to a
thermal density matrix. Observations near future infinity are
equivalent to observations made near the horizon with u > 0. That
means that our discussion applies and in terms of u, the density
matrix is exp(−2πK ). Let us convert that to the way it would be
viewed by an observer at infinity. The Lorentz boost operator acts
on u by u∂u. Using the formula (∗) we see that u∂u = −4GM∂t .
The generator ∂t corresponds to the Hamiltonian H. So the
mapping from u to t maps K to 4GMH, and the density matrix
ρ = exp(−2πK ) becomes

ρ = exp(−8πGMH),

which is a thermal density matrix at TH = 1/8πGM.



With a little more time, I would go on now to explain the
Euclidean picture of black hole thermodynamics that was
developed by Gibbons and Hawking, among others. Unfortunately
that would come at the cost of not being able to give at least a
taste of some of the modern results. Progress in the 21st century
has largely depended on understanding the meaning of quantum
entropy at a deeper level. I am really only going to be able to
explain one result in this direction, which was by H. Casini (2008).



We need to begin by discussing more thoroughly what entropy
means at the quantum level. The original definition of entropy in
terms of microphysics was by Boltzmann in the 19th century.
Consider a system of N particles in a box with positions ~x and
momenta ~p. As a classical physicist, Boltzmann assumed that at a
given time, ~x and ~p have definite values even if we do not know
them. He described the state of our knowledge by a probability
distribution function ρ(~p, ~x) that encodes our knowledge, and –
after great labor – defined the entropy as the phase space integral
of −ρ log ρ:

S =

∫
d~p d~x (−ρ(~p, ~x) log ρ(~p, ~x)) .



For a quantum system, the density matrix ρ, which we introduced
earlier, is the closest analog of the classical probability distribution
function. Recall that if a system is described by density matrix ρ,
then the expectation value of any observable O is

〈O〉 = TrOρ.

After diagonalizing the hermitian matrix ρ as ρij = δijλj for some
λ1, · · · , λN , we have therefore

〈O〉 =
N∑
i=1

λiOii ,

as if the system is in state i with probability λi . This interpretation
makes sense, since, because ρ is nonnegative and Tr ρ = 1, the λi
are nonnegative and their sum is 1.



So the quantum analog of Boltzmann’s integral

S =

∫
d~p d~x (−ρ(~p, ~x) log ρ(~p, ~x))

is the von Neumann entropy of a density matrix

S = −Tr ρ log ρ.

In the classical limit, the von Neumann entropy goes over to the
classical entropy (times a constant that is poorly defined
classically). If the eigenvalues of ρ are λ1, λ2, · · · , λN , then

S = −
N∑
i=1

λi log λi .



The state of a system is known with certainty if one of the λi is 1
and the others 0 – which means that ρ has rank 1. In that case,
the formula

S = −
N∑
i=1

λi log λi

gives S = 0. Otherwise every nonzero λ makes a positive
contribution in the sum so

S > 0.

If a system is entangled with something else, ρ has rank greater
than 1 and therefore S > 0.



However, there is a fundamental difference between the classical
and quantum cases. Classically, one assumes that ~x and ~p have
actual values, and one is describing a system by a distribution
function ρ(~p, ~x) because of lack of microscopic knowledge.
Quantum mechanically, a system can have a microscopic or
“fine-grained” entropy even if we have as full a description of its
state as quantum mechanics allows. That happens because of
entanglement. Suppose that A and B are two quantum systems in
an overall pure state ψAB. If ψAB is entangled, then the density
matrix ρA of system A has rank greater than 1 and system A has a
positive von Neumann entropy. If A and B are entangled, this can
be verified experimentally and there is no way to describe system
A by a pure state density matrix with zero entropy.



In general, just as classically, our knowledge of the state of a
system might be less complete than quantum mechanics allows. In
that case, we describe a system by a density matrix ρ that reflects
our knowledge. For example, if we know nothing about the state of
a system, we would take ρ to be a multiple of the identity, even if
someone else (who maybe knows how the system was prepared)
would describe it by a pure state. If we know nothing about a
system except its temperature, we use ρ = 1

Z e
−βH , where Z is

chosen so Tr ρ = 1. In such a situation, the von Neumann entropy

S = −Tr ρ log ρ

is the thermodynamic entropy, a familiar concept classically.



What is different about quantum mechanics is the entropy that
remains if our knowledge of the state of a system is as complete as
quantum mechanics allows. This has been called “entanglement
entropy” – because it results from the entanglement of a system
with some other system – and it has also been called “fine-grained
entropy.”



The idea that the Bekenstein-Hawking entropy of a black hole should be
understood in terms of entanglement entropy was apparently first put
forward by R. Sorkin in 1983 (in a paper that attracted only modest
attention at the time). The idea was just the following. In a quantum
field theory, divide space into two regions A and B

Let Ψ be the vacuum state, and ρA the “reduced density matrix” of the
vacuum for the state Ψ. One can try to calculate the fine-grained
entropy SA. One finds that it is ultraviolet divergent but the coefficient
of the divergence is proportional to the area A of the boundary between
regions A and B.



Sorkin’s idea, in modern language, was that somehow gravity cuts off the
ultraviolet divergence, leaving an entanglement entropy in the vacuum
between the two regions that is the Bekenstein-Hawking entropy A/4G ,
where A is the area of the boundary between them. This makes a lot of
intuitive sense, as it matches two ideas:

(1) A/4G is the irreducible entropy of the system for someone who has
access only to the region outside the horizon

(2) the divergence in the entanglement entropy is proportional to A
because it comes from short wavelength modes near the “horizon,” as if
(after cutting off the divergence) the density of quantum degrees of
freedom on the horizon per unit area is 1/4G as in Wheeler’s picture:312 JOHN ARCHIBALD WHEELER THE SEARCH FOR LINKS 313

Fig. 19.1. Symbolic representation of the "telephone number" of the particular one of the
2" conceivable, but by now indistinguishable, configurations out of which this particular
blackhole, of Bekenstein number N and horizon area 4NHlogs2, was put together. Symbol,
also, in a broader sense, of the theme that every physical entity, every it, derives from bits.
Reproduced from JGST, p.220.

a magnetic field B that runs perpendicular to it. In consequence the piece of copper
receives in the time t a transfer of momentum p in a direction z perpendicular to
the directions of the wire and of the field,

p - Blit
= (flux per unit z) x (charge, e, of the elementary carrier of current)

x (number, N,of carriers that pass in the time t)
(19.2)

This impulse is the source of the force that displaces the indicator needle of the
magnetometer and gives us an instrument reading. We deal with bits wholesale
rather than bits retail when we run the fiducial current through the magnetometer
coil, but the definition of field founds itself no less decisively on bits.

As third and final example of it from bit we recall the wonderful quantum
finding of Bekenstein [58-60] — totally unexpected denouement of earlier classical
work of Penrose [61] Christodoulou [62] and Ruffini [63] — refined by Hawking [64,
65] that the surface area of the horizon of a blackhole, rotating or not, measures
the entropy of the blackhole. Thus this surface area, partitioned in imagination
(Fig. 19.1) into domains each of size 4fUoge2, that is, 2.77... times the Planck area,

yields the Bekenstein number, N; and the Bekenstein number, so Thorne and Zurek
explain [66] tells us the number of binary digits, the number of bits, that would be
required to specify in all detail the configuration of the constituents out of which
the blackhole was put together. Entropy is a measure of lost information. To no
community of newborn outside observers can the blackhole be made to reveal out
of which particular one of 2N configurations it was put together. Its size, an it, is
fixed by the number, N, of bits of information hidden within it.

The quantum, H, in whatever correct physics formula it appears, thus serves as
lamp. It lets us see horizon area as information lost, understand wave number of
light as photon momentum and think of field flux as bit-registered fringe shift.

Giving us its as bits, the quantum presents us with physics as information.

How come a value for the quantum so small as H = 2.612 x 10~66 cm2? As well
as ask why the speed of light is so great as c = 3 x 1010 cm/s! No such constant
as the speed of light ever makes an appearance in a truly fundamental account
of special relativity or Einstein geometrodynamics, and for a simple reason: Time
and space are both tools to measure interval. We only then properly conceive
them when we measure them in the same units [4, 16]. The numerical value of
the ratio between the second and the centimeter totally lacks teaching power. It
is an historical accident. Its occurrence in equations obscured for decades one of
Nature's great simplicities. Likewise with H\y equation that contains an H
floats a banner, "It from bit". The formula displays a piece of physics that we
have learned to translate into information-theoretic terms. Tomorrow we will have
learned to understand and express all of physics in the language of information. At
that point we will revalue H = 2.612 x 10~66 cm2 — as we downgrade c = 3 x 1010

cm/s today — from constant of Nature to artifact of history, and from foundation
of truth to enemy of understanding.

19.3 Four No's

To the question, "How come the quantum?" we thus answer, "Because what we
call existence is an information-theoretic entity." But how come existence? Its
as bits, yes; and physics as information, yes; but whose information? How does
the vision of one world arise out of the information-gathering activities of many
observer-participants? In the consideration of these issues we adopt for guidelines
four no's.

First no: "No tower of turtles," advised William James. Existence is not a globe
supported by an elephant, supported by a turtle, supported by yet another turtle,
and so on. In other words, no infinite regress. No structure, no plan of organization,
no framework of ideas underlaid by another structure or level of ideas, underlaid
by yet another level, by yet another, ad infinitum, down to a bottomless night. To
endlessness no alternative is evident but loop [47, 67], such a loop as this: Physics



Twenty-first century developments have supported the intuition in
these statements, though leaving us with plenty of mysteries.

I will use the remaining time to explain just one example where
something really informative has been said which depends on a
better understanding of what we should mean by “entropy.” This
involves the work of H. Casini (2008) on the “Bekenstein bound.”



Bekenstein (1980) considered whether the Generalized Second Law
(GSL) is obeyed when a black hole of mass M and therefore radius
R = 2GM absorbs a body of size R, energy E , and entropy S . The
entropy S of the body disappears, so the GSL says that the
increase in the black hole entropy must be more than that. The
black hole entropy A/4G changes, as we actually computed in an
earlier discussion of Bekenstein’s work, by 8π2GME . We therefore
would like

8π2GME > S

if the black hole can absorb the given body. If one naively says
that a black hole of size 2GM can only absorb a body of size R if
R < 2GM, then the desired inequality becomes

4π2RE > S .

Note that this formula makes no mention of gravity or Newton’s
constant – it is potentially just a statement about ordinary
quantum physics without gravity.



My explanation did not do justice to Bekenstein’s argument, which
involved considering a highly rotating black hole and gave a more
convincing explanation with better constants. Let us interpret the
“Bekenstein bound” to be the statement that in quantum field
theory without gravity, there should be a universal inequality
between the size, energy, and entropy of a system, of the general
form

RE > kS ,

with a universal constant k.



Faced with a conjecture like this, two questions come to mind: (1)
Is it true? and (2) If true, is it interesting? For years, there seemed
to be ample basis for skepticism on both counts.



On the question of whether the Bekenstein bound was true, there
seemed to be a trivial argument that it could not be true, at least
not as a universal statement about all quantum field theories.
Consider a theory that has N elementary particles all of the same
mass. Such theories exist, for instance free field theories. Consider
a system consisting of a box with one of these particles inside it.
The entropy seems to be at least logN, from the choice of one of
N possible particles to put in the box. On the other hand, the size
and energy of the box do not depend on N. So it seemed clear
that the Bekenstein bound could not be a universal statement
about quantum field theory.



On the other hand, if true, is the Bekenstein bound interesting?
Can we think of a system where the Bekenstein bound is close to
being violated? Consider a system made of massless particles.
(Making the particles massive increases the energy without
increasing the entropy so it goes in the wrong direction.) For
example, consider a box of size ρ containing a gas of massless
particles at temperature T . In three dimensions, the number of
particles in the box is of order (ρT )3 and the entropy is of the
same order

S ∼ (ρT )3.

On the other hand, the energy is

E ∼ ρ3T 4.

So the Bekenstein ratio S/ρE , on which we want an upper bound,
is of order

S

ρE
∼ 1

ρT
.

If ρT >> 1, the notion of a thermal gas in a box makes sense. In
that case, S/ρE << 1 and the Bekenstein bound is satisfied by a
wide margin.



How do we find a system for which the Bekenstein bound is
interesting as well as true? Keeping still many particles in the box,
but assuming the particles are not in thermal equilibrium, makes
matters worse since it lowers the entropy S for given energy E . To
make the Bekenstein bound challenging, we need to reduce the
number of particles, which we can do by lowering the temperature.



The best case is that the box just contains 1 or a few massless
particles, or equivalently T ≤ 1/R. But a box containing just 1 or
a few massless particles is going to weigh much more than the
particles that it contains. In estimating the Bekenstein ratio, we
cannot ignore the mass of the box (which might have been
unimportant when there are many particles in the box but is
important if the box is almost empty). Including the mass of the
box goes in the wrong direction again, and makes the Bekenstein
bound uninteresting.



So in other words, the case that the Bekenstein bound is
interesting is the case of a single particle without a box. But what
sense does the Bekenstein bound make in that case? In other
words, what is the entropy of a single particle? And for that
matter, what is the size of a system consisting of a single particle?
In other words, when we try to go to a regime in which the
Bekenstein bound is interesting, the statement of the Bekenstein
bound does not seem to make sense.



Amazingly, Casini was able to give a precise definition to the terms in the
Bekenstein bound and to prove it. To explain this, I need to tell you one
more thing about density matrices. Let σ, ρ be two density matrices on
the same Hilbert space H. The relative entropy between them is defined
as

S(ρ||σ) = Tr (ρ log ρ− ρ log σ) .

It measures, in a sense that turns out to be useful, how different are ρ
and σ. For now, what we care about is just this: S(ρ||σ) is non-negative,
and vanishes only if σ = ρ. To prove this, one lets σ(t) = (1− t)ρ+ tσ
for 0 ≤ t ≤ 1 and one considers the function

f (t) = S(ρ||σt) = Tr (ρ log ρ− ρ log σ(t)) .

Then f (0) = f ′(0) = 0 and if ρ 6= σ then f ′′(t) > 0 for 0 ≤ t ≤ 1.

(Prove this using log σ(t) =
∫∞

0
ds(1/(s + σ(t))− 1/(s + 1)).)

So S(ρ||σ) = f (1) > 0 if ρ 6= σ.



Casini considered the vacuum state Ω of an arbitrary quantum field theory
and any other state Ψ. The goal is to prove that the Bekenstein bound is
valid for the state Ψ, with the correct interpretation of the terms. First,
Casini divided space into the two halves x > 0 and x < 0 where x is one
of the spatial coordinates. The corresponding division of spacetime looks
like this in a two-dimensional picture where I show only x and the time t:

The left and right wedges are called Rindler wedges. Casini consider the
density matrices ρ = ρΨ and σ = σΩ of the states Ψ and Ω reduced to
region A – that means where one only considers measurements in region
A. The relative entropy between them measures how well Ψ and Ω can
be distinguished by someone who only makes measurements in region A.
(For brevity I will use here the language of density matrices, though a
rigorous formulation of what I am about to say uses von Neumann
algebras instead.)



Let us compute this relative entropy:

S(ρ||σ) = Trρ log(ρ− log σ) = (Tr ρ log ρ− Trσ log σ)

+ (Trσ log σ − Trρ log σ) .

I added and subtracted a term to write the relative entropy as the
sum of two ultraviolet-finite expressions. One term is minus the
difference of entanglement entropies between the state Ψ and the
vacuum Ω:

(Tr ρ log ρ− Trσ log σ) = SΩ − SΨ = −∆S .

The “area law” divergence cancels out when we take this
difference.



To evaluate the other term

(Trσ log σ − Trρ log σ)

we remember that if O is any operator, then 〈Ψ|O|Ψ〉 = TrσO,
Tr 〈χ|O|χ〉 = Tr ρO. We use this with O = − log σ, and we
remember that we showed before that σ = exp(−2πK ) so

− log σ = 2πK = 2π

∫
dxdx⊥xT00.

So the second term is

2π〈Ψ|K |Ψ〉 − 2π〈Ω|K |Ω〉 = 2π

∫ ∞
0

dxdx⊥ 〈Ψ|xT00(x , x⊥)|Ψ〉.

(With the usual regularization of T00, the term with Ψ→ Ω
vanishes.)



Let us define

E =

∫ ∞
0

dx

∫ ∞
−∞

dx⊥ 〈Ψ|xT00(x , x⊥)|Ψ〉.

Casini’s insight is that if Ψ is a quantum state that describes a
system that intuitively is localized almost entirely in the region
A : x > 0, and that has size R and energy E , then E & ER. He
proposed therefore to use the quantity E , which is rigorously
defined for all quantum states, as the stand-in for Bekenstein’s
heuristic ER. He also proposed ∆S , the difference in
entanglement entropies between the state Ψ and the vacuum state
Ω, to stand in for the heuristic S in the Bekenstein proposal. The
positivity of relative entropy says that

E ≥ ∆S

2π
,

with equality only if Ψ = Ω. This is Casini’s rigorous version of the
Bekenstein bound, valid for all quantum states.



In conclusion, I reviewed some of the early developments in black
hole thermodynamics from the 1970’s, and I hope I have given you
at least a taste of how, in modern times, much more insight has
come from understanding quantum entropy in a way that makes
sense for all states, whether thermodynamics is valid or not. If I
had had more time, in the first half of the talk, I would have
wanted to describe the Euclidean approach to black hole entropy,
by Gibbons and Hawking. In the second half of the talk, I would
have wanted to explain A. Wall’s proof of the generalized second
law, the Ryu-Takayangi holographic formula for entanglement
entropy, the notion of entanglement wedge reconstruction and the
role of quantum error correction in holography. Alas, not for today!



I chose this topic because I think the modern developments
involving the fine-grained entropy are genuinely very exciting and
probably pointing toward something really new. I regret that I was
really only able to explain the first result in that direction.


